1.6 Perform Operations with Complex Numbers

Monday, October 16, 2017

6:53 AM

 $X^2=-1$ has NO REAL number solutions because the square of any real number x is never a negative number.

To overcome this problem, mathematicians created an expanded system of numbers using the imaginary unit i, defined as $i=\sqrt{-1}$

The square root of a negative number

Property	Example
1. If r is a positive real number, then $\sqrt{-r}=i\sqrt{r}$	$\sqrt{-3} = i\sqrt{3}$
2. By property (1), it follows that $(i\sqrt{r})^2 = -r$	$(i\sqrt{3})^2 = i \cdot 3 = -3$

Solve a Quadratic Equation

2x ² +11=-37	Subtract 11
2x ² =-48	Divide by 2
X ² =-24	Square Root
$x=\pm\sqrt{-24}$	Write in term of i (pull out negative under the radical)
$x=\pm i\sqrt{24}$	Simplify the radical
$x=\pm 2i\sqrt{6}$	

Complex Number: a + bi a is the real part, bi is the imaginary part

Multiply Complex Numbers

(9-2i)(-4+7i)	FOIL
$-36 + 63i + 8i - 14i^2$	Simplify, Replace i^2 with -1
-36 + 71i - 14(-1)	Simplify
-36 + 71i + 14	Combine like terms
-22 + 71i	

Divide Complex Numbers

$\frac{7+5i}{1-4i}$	Multiply numerator and denominator by the complex conjugate
$\frac{7+5i}{1-4i} \cdot \frac{1+4i}{1+4i}$	FOIL FL
$\frac{-13 + 33i}{17}$	

Plot Complex numbers: real-x value imaginary-y value

3-2i	(3,-2i)
-2+4i	(-2,4)
5i	(0,5)
-7	(-7,0)

Absolute Value: $=\sqrt{a^2+b^2}$

3-4i

$$\sqrt{3^2 + (-4)^2}$$

$$\sqrt{9 + 16}$$

$$\sqrt{25}$$

5